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The performance of rational design to maximize the structural diversity of databases for lead
finding and lead refinement was investigated. Rational methods such as maximum dissimilarity
methods or hierarchical cluster analysis for designing compound subsets were compared to a
random approach to study their efficiency for an enhancement of the diversity of three different
databases. All investigations were done based on 2D fingerprints as a validated molecular
descriptor. To compare the performance of the rational selection methods to a random approach,
we additionally used probability calculations. When using maximum dissimilarity-based
selections, a single compound can be a member of different neighborhoods as defined by the
similarity threshold value, while in hierarchical clustering each compound is assigned to only
a single cluster. Therefore the relationship between the similarity threshold of the maximum
diversity selection method and a 2D similarity search threshold was studied. In contrast to
hierarchical clustering analysis, maximum dissimilarity selections allow to use a similarity
threshold for adding a new compound to an already selected compound list. Reasonable values
for this similarity threshold are presented here. More diverse subsets were designed using
maximum dissimilarity selections, which cover more biological classes than using random
selections. An optimally diverse subset without redundant structures containing only 38% of
one original dataset was generated, where no structure is more similar than 0.85 to its nearest
neighbor, but all biological classes were represented. When it is acceptable to cover only 90%
of all biological targets, 3.5-3.7 times more compounds need to be selected using a random
approach than in a rational design approach. Such coverage rate shows the highest efficiency
of design techniques compared to a random approach. In those subsets no compound is closer
than 0.70 to its nearest neighbor. Furthermore a comparative molecular field analysis (CoMFA)
is used to evaluate designed and randomly chosen subsets for a database consisting of inhibitors
of the angiotensin-converting enzyme. It was shown that designed subsets using maximum
dissimilarity methods lead to more stable quantitative structure-activity relationship (QSAR)
models with higher predictive power compared to randomly chosen compounds. This predictive
power is especially high when there is no compound in the test dataset with a similarity
coefficient less than 0.7 to its nearest neighbor in the training set.

1. Introduction

Today the evaluation of chemical structure databases
and the design of compound subsets is important in
order to maximize resources for a successful and timely
discovery of new interesting compounds. Hence, the
identification of redundant compounds based on molec-
ular similarity considerations1 is a key requirement of
today’s novel chemistry techniques such as combinato-
rial organic synthesis2 and high-throughput screening.
Any reduction of the number of compounds to be
synthesized and/or tested, while only reducing the
amount of redundancy within a database, but not
introducing any voids, should have a dramatic impact
on research efficiency and costs associated.3 Useful
high-throughput screening projects do not depend only

on the size of the library but also on molecular en-
sembles without redundant information.4

The advent of the concept of molecular diversity5
stimulated many investigations toward diverse com-
pound selections for synthesis and biological testing.
This concept is based on the similar property principle,6
which states that structurally similar molecules should
exhibit similar physicochemical and biological proper-
ties. This further implies the prediction of unknown
target properties for a molecule based on known values
for similar compounds. It should be possible to select a
representative subset of compounds covering the entire
property space of a structure database. Recently some
work was done by different groups to investigate which
physicochemical measure of similarity translates best
to biological activity.7

In this article, the selection of diverse chemical
compound subsets for biological screening based on a
computational chemistry approach is investigated in
detail. The superiority of rational library design meth-
ods today is still a question;8 therefore a comparison
between an efficient design and a random selection is
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of great interest. Hence, maximum dissimilarity and
hierarchical clustering methods for designing compound
subsets were compared to random selections in order
to obtain information about the efficiency enhancement
using those rational techniques. All rational compound
selections are based on 2D fingerprints as molecular
topological descriptors containing information about the
presence or absence of molecular fragments. In earlier
studies, a similarity radius for 2D fingerprints could be
estimated, and compounds within this similarity radius
of another molecule were shown to have comparable
biological properties.7 It was not the aim of this study
to compare various descriptors or various selection
techniques, but to compare some well-accepted and
representative techniques to a random selection.
Compound selections to find subsets of diverse chemi-

cal structures were done in the present study on a public
database containing 1283 compounds active in 55
biological classes with several topologically diverse
templates. The question here is, how many compounds
must be selected to get a representative from every
biological class of this database using random or rational
methods? A second test example, a database of 334
compounds containing members from 11 different quan-
titative struture-activity relationship (QSAR) target
series was studied with the same question in mind. This
database has the advantage that the biological data are
obtained in well-defined biological assay systems under
identical conditions and are not compiled from literature
data obtained from different laboratories, which could
be a potential source of uncertainty for the first dataset.
Finally a database of 138 inhibitors of the angiotensin-
converting enzyme9 was investigated. Here designed
or randomly chosen subsets were used as a training set
for 3D-QSAR studies based on the CoMFAmethodology
(comparative molecular field analysis). The resulting
3D-QSAR models were subsequently used to predict
the biological activities of the remaining compounds not
included in the training set. As this database contains
only molecules acting on the same target, the question
to answer was, how many compounds are needed in
order to generate a valid and predictive QSAR model?
This study was carried out with the aim to compare the
ability of a randomly selected or designed subset to
forcast biological activities of related compounds. The
corresponding results should reflect how CoMFA oper-
ates on diverse or similar training sets and thus provide
guidelines on how to design informative series for
generating and validating sound and predictive QSAR
models.
The choice of 2D fingerprints as descriptors for

compound selections is based on previous investigations7
showing their superiority compared to other 2D or 3D
molecular descriptors. In these earlier studies it was
found that compound subsets without any compound
closer than 0.85 to another one (measured using the
Tanimoto coefficient10 of 2D fingerprints as a dimen-
sionless metric) are able to span the entire biological
property space of a database. For all biological targets
at least one representative, bioactive compound is
sampled. Thus a removal of redundant structures
should lead to a child database spanning the same
physicochemical diversity space with a smaller number
of compounds, which still carry the same information

as the parent database.11 Such a novel subset designed
using a validated descriptor should also cover the entire
biological property space. We will refer to such a
database as an “optimally diverse” database in the
following context.

2. Methods

2.1. General Methods. All calculations and modeling
work were done using the program package SYBYL, versions
6.22 and 6.25.12 Database manipulations were carried out
using UNITY 2.5 database management tools13 in connection
with the SYBYL module SELECTOR to analyze and compare
databases. In the following context, we will refer to the
following UNITY programs: dbdiss, a program to select
compounds based on a maximum dissimilarity method; db-
search, a program for similarity searching in UNITY data-
bases. Detailed descriptions of these programs can be found
elsewhere,13 while a brief explanation of the underlying ideas
is given in section 2.3. Automation of many procedures was
done using the SYBYL Programming Language (SPL) and
UNIX shell scripts.
2.2. Computation of Descriptors. 2D fingerprints were

generated using the program UNITY (version 2.5). Those
descriptors contain information about the presence of molec-
ular fragments in a binary format. For a given chemical
structure, a list of all possible fragments of a particular length
is generated. The presence of a specific fragment turns on a
bit in this bitstring. Due to the large number of existing
fragments in a single molecule, it is not possible to assign one
bit to only a single fragment. The fingerprints used in the
present study were set up as follows: Bits 1-85 encode the
presence of two-atomic fragments without taking hydrogens
into account. Bits 86-184 encode non-hydrogen-containing
three-atomic fragments; the presence of four-atomic fragments
including hydrogens is encoded in bits 185-333. Finally four-
to six-membered atomic fragments without hydrogens are
encoded in the majority of bits from 334 to 928. In addition
to this view on molecular fragments, the presence of charac-
teristic groups, rings, or atom types is encoded in the remain-
ing 60 of the total 988 bits.14 For those features, multiple
occurrences are measured and lead to more predefined neigh-
boring bits set to 1. This way of storing molecular information
now allows to quantify the similarity of two molecules based
on various similarity coefficients, like the Tanimoto or cosine
coefficient. A detailed comparison of both types of similarity
descriptors is given in ref 15. Both coefficients are based on
the number of bit positions set in both individual bitstrings
for both molecules normalized by the number of bits set in
common. They differ, however, in the exact way of scaling.
The Tanimoto coefficient is widely used nowadays in database
analysis, as it has certain properties making the work with
larger datasets very efficient. Due to the superior features in
terms of speeding up a database comparison and selection, we
decided to investigate the Tanimoto coefficient in this study.
One limitation of this metric is that the triangle inequality
does not hold, while it is fulfilled for the cosine coefficient. A
similarity coefficient of 0 means that both structures have no
“1” bits in common; there is no intersection between both sets
of fragments. In contrast, a value of 1 indicates that the
fingerprints are identical. Similar features are present in
those molecules as far as the fingerprint descriptor is con-
cerned. Examples of different molecules and the corresponding
Tanimoto coefficients can be found elsewhere in the litera-
ture.11 This implementation of 2D fingerprints was chosen,
as an earlier study7c has revealed a similar performance for
different types of hashed fingerprints (e.g., in the implementa-
tion of the Tripos UNITY and Daylight software packages).
2.3. Compound Selection and Comparison. Two al-

ternative approaches for compound selections and classifica-
tions were used based on the distance matrix (or dissimilarity
matrix) between every pair of compounds. The fastest ap-
proach to select a representative subset is called themaximum
dissimilaritymethod.16,17 The implementation of this strategy
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begins with a random selection of a seed compound. Then
every new compound is successively chosen such that it is
maximally dissimilar from all members of the previous subset.
For this investigation, we use (1 - Tanimoto coefficient) as a
dissimilarity measure. This coefficient was computed between
every candidate molecule and all members of the already
selected subset to identify the next compound to be selected.
This entire process will be terminated either when a maximum
number of compounds has been selected or when no other
molecules can be selected without being too similar to one of
the already selected subset members. This latter criterion
avoids the selection of redundant compounds. As this method
takes a random starting point, the variance in the results was
checked by comparing various selections with a preset maxi-
mum number of compounds on one of the described databases.
Cluster analysis as an alternative rational technique offers

more specific control by assigning every single structure to a
group of compounds. Hierarchical clustering18,19 does not
require any prior assumptions about the number of clusters;
small clusters with a very close relationship between their
members are nested within larger clusters containing more
dissimilar structures. Many different clustering methods have
been reviewed in the literature,18 and there are no a priori
guidelines, which will be most appropriate for a particular
dataset, although some methods show a better performance
for grouping similar compounds.7c As it was not our intention
to compare the performance of different hierarchical clustering
methods, we have chosen the hierarchical agglomerative
cluster-center method (i.e., the distance between two clusters
equals the distance between the two cluster centroids). Initial
studies7d to other hierarchical clustering methods (single
linkage, the distance between the closest pair of data points
in both clusters; complete linkage, the distance between the
most distant pair of data points in both clusters; average
linkage, the average of all pairwise data points between two
clusters; have shown only small differences when comparing
their ability to separate active from inactive compounds of one
of our later described databases. After the clustering process,
the structure closest to the center of a cluster is selected as
the representative structure.
Random selections were used to generate subsets of identical

sizes for comparison based on the C-routine rand(). The
distribution of active compounds in those subsets will be
compared to corresponding subsets generated using rational
methods.
The mean Tanimoto coefficient for each compound subset

is computed as an average using the Tanimoto coefficients for
every structure to its nearest neighbor. This similarity index
distribution can be used to generate a histogram, and the
maximum Tanimoto coefficient as the closest pair of two
compounds within the entire dataset is extracted for analysis.
2.4. Probability Calculations. A. Random Selection.

Probability calculations were used to compare the performance
of rational compound selections to a random approach. A
compound with a reported specific biological activity is referred
to as a hit. This activity can be measured using an enzyme
assay. The probability p to find exactly n1 hits using n
selections in a database with a total of N compounds and N1
hits for this particular target is given by eq 1:

where N1 is total number of hits for a particular target in the
database, n1 is number of hits to be selected,N is total number
of compounds in the database, and n is number of tries to select
exactly n1 hits.
The probability to find at least one hit for a biological target

class (btc) can be calculated as:

For datasets containing more than one biological target class,
the probability to cover all classes by at least one hit per class
by selecting n compounds is given by eq 3:

where M is number of target classes.
The question, howmany biological target classes are covered

by a random selection of n compounds, can now be addressed
by computing the mean of all probabilities for all individual
targets (eq 4):

B. Selection by Hierarchical Clustering. The success
of a hierarchical cluster analysis is given by the proportion in
eq 5:

Then the probability to find at least one hit by hierarchical
clustering of the dataset and selecting one compound randomly
of each cluster is

where n is number of clusters.
The probability to find no hit (1 - cli) is used, because it

can be calculated easier than the probability to find exactly
one hit, two hits, etc. The probability to cover all targets by
at least one hit per biological target class is given in eq 7:

where M is number of target classes.
The question of how many biological target classes are

covered by hierarchical clustering and a random selection of
one compound from each cluster again is answered by the
mean of all individual probabilities:

2.5. ComparativeMolecular Field Analysis. CoMFA20-22

is a useful QSAR technique with numerous known applica-
tions. Here this 3D-QSAR technique is used to further
evaluate designed and randomly chosen subsets. The starting
geometries and superposition rules for the investigated dataset
consisting of 138 angiotensin-converting enzyme (ACE) inhibi-
tors were taken from DePriest et al.9 Following the definition
of a superposition rule for the 3D representations of ACE
inhibitors, the steric and electrostatic interaction energies
between a probe atom and every structure are calculated at
the surrounding points of a predefined grid, using a volume-
dependent lattice with 2.0-Å grid spacing, a positively charged
carbon atom and a distance-dependent dielectric constant. The
magnitude of the regions was defined to extend the ensemble
of superimposed conformers by 4.0 Å along the principal axes
of a Cartesian coordinate system. The maximum field values
were truncated to 30 kcal/mol for the steric and (30 kcal/mol
for the electrostatic interaction energies. For points “inside”
a molecule (determined by a steric energy value of 30 kcal/
mol), no electrostatic energy was computed. Those field values
were set to the mean of the corresponding column in the PLS

p(N1,n1,N,n) )
(N1n1 ) * (N - N1

n - n1 )
(Nn )

(1)

WPbtc ) ∑
i)1

n1

p(N1,n1,N,n) (2)

P ) ∏
btc)1

M

WPbtc (3)

NP ) WPbtc (4)

cli ) no. of hits in cluster i
total no. of compounds in cluster i

(5)

WCbtc ) 1 - ∏
i

n

(1 - cli) (6)

P ) ∏
btc)1

M

WCbtc (7)

NP ) WCbtc (8)
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(partial least-squares) analysis. To speed up the analyses and
reduce the amount of noise, a column filter was used to exclude
the columns with a variance smaller than 2.0 (minimum σ).
Equal weights were assigned using the CoMFA scaling op-
tion.23 For cross-validation, the leave-one-out method was
utilized, as implemented in the program SAMPLS24 within
SYBYL. Unless specifically stated otherwise, default settings
for all other parameters in CoMFA were used.
The overall quality of the analyses was expressed by the

corresponding cross-validated r2 value r2(cv), defined as:

where SD is the variance of the biological activities of the
molecules around the mean values. PRESS represents the
sum of the squared differences between the predicted and
target property values for every compound. The ideal value
of 1.0 is reached when PRESS becomes 0.0 (i.e., the internal
prediction is perfect). Hence, this r2(cv) is considered to be a
very critical indicator for the internal consistency of the
analysis. The calculation of the predictive r2 value was based
on the molecules in the test set around the mean activity of
the training set molecules.

3. Results and Discussion

3.1. Characteristics of the Databases. Three
different databases from diverse sources and with
different characteristics were investigated. The first
database, IC93, is a collection of 1283 biologically active
molecules extracted from the IndexChemicus 1993
database.25 Compounds having similar biological ac-
tivities were put in similar classes leading to the
definition of 77 biological target classes according to the
biological activity strings extracted from that database.
A detailed listing of all represented biological activities
and the population of each class are given in the
Supporting Information. However, while some com-
pounds are active in more than one biological class,
other classes were only populated by a few members. It
should be noted that this database contains for some
classes heterogeneous bioactive molecules, which might
act on more than one receptor. This is considered to be
a potential source of uncertainty. It is likely that a
subdivision into more classes corresponding to biological
receptors could improve the classification results. How-
ever, this database was the only public data collection
available for this purpose when this investigation was
started.
Initial selections were analyzed using this grouping,

while for later investigations, classes with very similar
biological activities were grouped together, leading to
55 classes. Details of this grouping are also given in
the Supporting Information. As the results for both
biological classifications in preliminary studies were
very similar, the classification leading to a lower total
number of groups and less groups with only a few
members was further utilized.
The second database, BAYER, with 334 compounds

was generated using various structure-activity series
for 11 proprietary and diverse biological targets. Those
compounds were put into a single database. One
important criterion in the selection of the QSAR series
was the different size and degree of similarity within
each individual dataset as well as different similarity
relationships between different series. In other words,
some compounds being active in different series are
sometimes quite similar and sometimes very dissimilar.

The third database is a diverse set of 138 ACE
inhibitors as first analyzed by DePriest et al.9 Here
quantitative biological activities were available (pIC50
values) on a 7-orders-of-magnitude range in a uniform
distribution.
To better characterize the structural variance within

each individual database and its translation into the 2D
fingerprint descriptor, we computed the following sta-
tistical data. For the first database, IC93, the average
number of bits for all molecules in the 2D fingerprint
descriptor file being set to 1 is 19.1% (SD 0.087, highest
coverage 42.0%). The average number of atoms in this
database including hydrogens is 52.1 (SD 21.6), the
average number of bonds 53.7 (SD 21.9), the average
number of rings 2.7 (SD 1.4), the average number of
rotatable bonds 11.2 (SD 8.1), and the average number
of heteroatoms 5.9 (SD 3.7). For the second database,
BAYER, we observed an average number of bits set to
1 in the fingerprint file of 22.5% (SD 0.10, highest
coverage 28.7%). Here the average number of atoms is
49.2 (SD 12.6), the average number of bonds 51.5 (SD
13.2), the average number of rings 3.1 (SD 0.9), the
average number of rotatable bonds 9.6 (SD 3.7), and the
average number of heteroatoms 6.9 (SD 2.5). Finally
the third database with the 138 ACE inhibitors shows
an average number of bits set to 1 in the fingerprint
file of 16.6% (SD 0.53, highest coverage 28.7%). For that
database the following average values were observed:
the average number of atoms 42.0 (SD 16.9), the average
number of bonds 42.7 (SD 17.8), the average number of
rings 1.7 (SD 1.0), the average number of rotatable
bonds 9.4 (SD 4.3), and the average number of hetero-
atoms 6.7 (SD 2.3). These data show the wide variance
within the input 2D fingerprint descriptor datasets and
the databases. A detailed analysis of the nearest-
neighbor similarities for all three databases to show the
degree of redundancy is given as a separate figure in
the Supporting Information. The majority of pairwise
nearest-neighbor similarities for all three databases
shows a Tanimoto coefficient larger that 0.85, while only
some structurally unique compounds are present. This
degree of redundancy is reflected by high mean Tan-
imoto coefficients of 0.907 for the IC 93 database, 0.842
for the BAYER dataset, and 0.872 for the ACE138
database. Hence all three databases are interesting
candidates to remove redundancy and select diverse
subsets.
3.2. Hierarchical Clustering versus Random

Selection. First the database BAYER was investigated
in detail using hierarchical cluster analysis (agglom-
erative cluster-center method). After the generation of
a dendrogram, the intercluster relationships were used
to generate 10, 20, 30, 40, 50, 60, 70, or 80 individual
clusters representing the entire database. The separa-
tion of active and inactive compounds at different levels
in the hierarchical cluster dendrogram is displayed in
Figure 1 in comparison to the probability to find at least
one active compound using a random selection. This
number of selected compounds equals the number of
generated clusters, because a single compound is ran-
domly chosen from each individual cluster. The first
analysis was done only for one single target in this
database out of 11 targets. This should answer the
question, how many compounds are needed to find at

r2(cv) ) (SD - PRESS)/SD (9)
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least one active compound out of 8 hits for this single
target in all 334 compounds? A cluster containing at
least one single biologically active compound is called
an “active cluster”, and all other clusters are referred
to as “inactive clusters”. Generating 20 clusters led to
three active clusters. In two of them, there are only two
compounds, and both are active (Figure 1). Hence a
subset of 20 molecules is sufficient to identify at least
two compounds showing biological activity for this
target. In contrast, the probability to find a single hit
for this target using a random selection of 20 compounds
is 39.3% (eq 1).
The graph in Figure 2 shows a comparison to cover

all biological targets between the probabilities of a
random selection and a selection by hierarchical cluster-
ing. The individual probabilities were calculated fol-
lowing eqs 3 and 7, respectively.
Using hierarchical clustering a minimum of 40 com-

pounds (12%) of this database must be selected to cover
all biological target classes by at least one hit per target.
From each cluster, the compound next to the cluster
center was used here as the representative compound.
In contrast, a random selection of 40 compounds shows
that the probability to cover all targets is only ca. 12%.
Even a selection of 80 compounds only corresponds to a
probability of ca. 65% to cover all targets. This suggests
that a random selection is not as efficient as the rational
design technique described here.
This retrospective analysis shows that it is possible

to represent the structural diversity of a database using
a smaller subset without missing interesting biological
activity. Other hierarchical clustering methods may
even lead to better results. However, one problem
remains unsolved: In practice the activity information
is not known a priori. The number of clusters to be

generated must be decided based solely on structural
information and similarity between molecules. To ap-
proach this problem further, the unbiased selection of
the optimal number of compounds to choose will be
described in the next section.
3.3. Database Representation by Subsets Using

Maximum Dissimilarity Methods. A selection of
compounds using the maximum dissimilarity method
can be terminated when no newmolecule can be selected
without being too similar to the already selected subset.
Hence the similarity of molecules based on the Tanimoto
coefficient and 2D fingerprints can be seen as an
adjustable parameter of this method. Thus the follow-
ing calculations were carried out on the IC93 and

Figure 1. Separation of active and inactive compounds from a hierarchical cluster analysis of the BAYER database given at
various levels of the cluster dendrogram (on the left side, 10-80 clusters were generated) in comparison to the probability to find
at least on active compound by random selection (given on the right side).

Figure 2. Comparison of the probability to cover all biological
targets using a random selection ([) or a selection based on
clusters (9) formed using a hierarchical cluster analysis for
the BAYER database with 334 compounds and for a single
biological target. The individual numbers were calculated
using eqs 3 and 7, given in the text.
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BAYER databases to determine, how the entire struc-
tural diversity of the database can be described by
smaller, but diverse, subsets. For the first step a
diverse subset is selected using the maximum dis-
similarity method, as implemented in the UNITY
program dbdiss. Each of the selected compounds is
subsequently used as a query in a 2D similarity search
using the UNITY program dbsearch. This search also
uses 2D fingerprints as similarity descriptors and
Tanimoto coefficients for structural comparisons. Fi-
nally all hitlists from individual searches were com-
bined. For each subset a characteristic proportion
defined as total number of hits from the similarity
search divided by the number of compounds in the
entire database is calculated. In this initial step of this
investigation, several diverse subsets were generated
with termination Tanimoto coefficients ranging from
0.25 to 0.90 in steps of 0.05. This parameter ensures
that the resulting subsets do not contain any pair of
molecules that is more similar than this threshold value.
For each of the resulting subsets several 2D similarity
searches were carried out with a minimum Tanimoto
coefficient as the similarity criterion ranging from 0.50
to 0.90 in steps of 0.05.
Both datasets IC93 and BAYER lead to very similar

results when analyzing the characteristic proportion in
detail. For further discussion the graphs from the
analysis of the BAYER dataset are displayed in Figure
3. On the x-axis the Tanimoto coefficients used as
termination criterion for the maximum dissimilarity
selection are plotted versus the Tanimoto coefficients
for a 2D similarity search on the y-axis. The proportion
computed for each x,y-pair of Tanimoto coefficients is

used to generate a 2D contour plot for a detailed
analysis. For reference the original 3D plot is shown
in the upper right corner of the 2D contour display.
Individual contours are shown with a contour spacing
of 1; for the first three contour lines the corresponding
proportions (dimensionless units) are indicated in this
figure. Of course this proportion is high when all
compounds from a maximum dissimilarity subset gen-
erated with a termination criterion of 0.95 are used for
a 2D similarity search with a termination Tanimoto
coefficient of 0.5. It was surprising that the optimal
proportion of 1 was not obtained using the same
Tanimoto coefficients for the diversity selection and
similarity search, but using a lower Tanimoto coefficient
for the diversity selection. This is graphically shown
in Figure 3.
This finding suggests that a particular compound

obtained in a maximum dissimilarity subset can be a
member of different neighborhoods as defined by the
similarity search threshold values. This finding is in
contrast to hierarchical clustering methods, where a
single compound is always assigned to only one cluster.
At the borderline in Figure 3, where this characteristic
proportion is equal to 1, the overlaps of different
neighborhoods are nearly eliminated and most of the
structural diversity is covered. Although this procedure
does not prevent from selecting one compound more
than once, it shows that the generation of a diverse
compound subset, where no structure is more similar
than 0.8 to any other member, is possible using a
Tanimoto coefficient of 0.74 for the termination of the
maximum dissimilarity selection.
The next step of this analysis is now to investigate

how similar two compounds must be in oder to take only
one for a representative subset. A Tanimoto coefficient
of 0.85 was earlier suggested as a threshold value.7

3.4. Maximum Dissimilarity Methods versus
Random Selections for Global Diversity. For the
IC93 database various subsets were selected with an
increasing number of members from 60 to 500 com-
pounds in steps of 20 using the maximum dissimilarity
method or random selections. To obtain data of higher
statistical significance, the results from 100 random
selections were averaged for each subset. These data
are analyzed in Figure 4.
In Figure 4a the mean and maximum Tanimoto

coefficients for all resulting subsets are plotted on the
y-axis versus the number of compounds in each subset
given on the x-axis. The mean Tanimoto coefficient is
defined as the average value for the Tanimoto coef-
ficients between neighboring pairs, while the maximum
Tanimoto coefficient corresponds to the value for the
closest pair of compounds within a particular subset.
When increasing the number of compounds in a subset,
the mean and maximum Tanimoto coefficients are also
increased for either the random selection or maximum
dissimilarity subset. It can be seen that the maximum
dissimilarity method led to more diverse subsets with
lower mean and maximum Tanimoto coefficients com-
pared to the randomly selected compounds.
From a detailed inspection of the mean and maximum

Tanimoto coefficients for the randomly chosen subset,
it is obvious that several redundant structures were
sampled in contrast to maximum dissimilarity methods.

Figure 3. 2D Tanimoto coefficient contour map. The relation-
ship between Tanimoto coefficients used as termination cri-
teria for a maximum dissimilarity selection to generate diverse
subsets (x-axis) versus the Tanimoto coefficients to extract
neighboring compounds in a UNITY 2D similarity search (y-
axis) is plotted. The proportion used to generate the 2D contour
map is defined as the number of similarity search hits divided
by the number of compounds in the entire database; this value
is computed for every pair of Tanimoto coefficients. Individual
contours are shown with a spacing of 1, and for the first three
contour lines the corresponding proportions are indicated. The
corresponding 3D plot is shown in the upper right corner of
the 2D plot for reference only.
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This is reflected by the decreased pairwise similarity
within those subsets. Hence using 2D fingerprints and
maximum dissimilarity methods, more diverse subsets
can be generated.
Those subsets also represent more biological classes

than the corresponding randomly selected subsets, as
can be seen from Figure 4b. The entire biological
property space of the original database is better repre-
sented by subsets designed using maximum dissimilar-
ity methods. The percentage of represented biological
classes for the IC93 database is plotted on the y-axis in
Figure 4b versus the number of structures within each
subset for the random subset (random exp) and the
maximum dissimilarity subset (maximum diss). In
addition, the theoretically expected coverage rates for
a random selection are also shown. This latter curve
shows great correspondence to the experimental curve

for a random selection, where only one of 100 examples
is shown. When selecting more than 440 structures,
from all biological classes at least one representative is
sampled. In contrast, many classes are not represented
within the corresponding randomly chosen subsets. A
maximum dissimilarity subset with 460 structures,
corresponding to a maximum Tanimoto coefficient of
0.85, can be selected without missing any biological
information. This maximum Tanimoto coefficient is in
good agreement with the similarity radius for 2D
fingerprints derived using other methods.7

Thus an optimally diverse subset for the 1283 biologi-
cally active structures from IC93 is obtained, when
selecting 487 compounds (38%) using 2D fingerprints
and a similarity radius of 0.85. The mean Tanimoto
coefficient for this subset is lower (0.72) than for the
entire IC93 database (0.92).
The selection of compounds using a maximum dis-

similarity method also has a random component, as its
seed structure is randomly picked. Thus the variance
in the results was checked by comparing the coverage
of biological classes for various selected subsets with 120
as the preset maximum number of compounds on the
IC93 database. Although individual structures are
different in different subsets, the represented biological
classes are similar. For subsets with 460 compounds
on the other hand, all biological classes are consistently
represented.
These investigations now allow to define an efficiency

enhancement for a maximum dissimilarity selection,
when compared to a random selection, using the fol-
lowing relationship:

This answers the question, how many compounds need
to be randomly selected (N(random)) in order to achieve a
comparable coverage rate of biological target classes to
the maximum dissimilarity selections (N(maxDiss))? To
cover, for example, 90% of all biological classes for the
IC93 database, 3.47 times more compounds must be
randomly selected compared to maximum dissimilarity
methods. Hence the latter method is 3.47 times more
efficient (Figure 5). For the IC93 and the BAYER
databases this efficiency maximum is identically found
at a coverage rate of ca. 90% of all biological targets.
For this BAYER database a maximum diversity selec-
tion is 3.7 times more efficient than a random selection,
as shown in Figure 5. Thus a selection of only 90% of
all biological targets is the most efficient selection when
comparing those two methods with respect to the two
independently compiled datasets studied here. To cover
more or less biological target classes using maximum
dissimilarity methods, a lower efficiency enhancement
is found.
Filling the gap between 90% and 100% coverage rates

requires many more compounds. For example more
than 440 compounds of the IC93 database are needed
to cover 100% of the biological targets instead of about
280 compounds to cover 90%. Thus the efficiency
enhancement effect is not longer so dominant. Trying
to cover less biological targets than ca. 90% on the other
hand becomes in essence almost similar to a random
selection.

a

b

Figure 4. Selection of various compound subsets from the
IC93 database using different methods: random or maximum
dissimilarity selections (denoted as random or diss) based on
2D fingerprints. (a) Comparison of the mean and maximum
Tanimoto coefficient (denoted as mean or max) for both
selections plotted on the y-axis versus the number of chosen
compounds in a subset given on the x-axis. (b) Comparison of
the percentage of biological classes covered from the IC93
database plotted on the y-axis versus the number of compounds
in each subset (x-axis) for a maximum dissimilarity selection,
an experimental random selection, and the theoretical expec-
tation for a random selection.

efficiency ) N(random)/N(maxDiss) (10)
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We think that allowing some biological targets to be
missed when designing new compound subsets is ad-
vantageous in terms of efficiency and resource manage-
ment. This corresponds to an improvement of the
efficiency of the screening process, while this selection
produces a 10% chance of not getting any hit for a
target. Thus it strongly depends on a cost/benefit
analysis for a specific screening experiment, whether
this procedure is acceptable or dangerous. The aim of
this investigation was to provide guidelines for such an
analysis.
A similarity radius of 0.85 can be derived for a

maximum dissimilarity subset, which covers 100% of
the biological targets, while for subsets covering only
90% of the biological classes, a similarity radius (i.e.,
maximum Tanimoto coefficient) of 0.7 can be found (see
Figure 4). This leads to the conclusion that for the
design of a compound collection suitable for secondary
screening or lead refinement, a similarity radius of 0.85
seems to be suitable in order not to miss important
information, while for an initial screening library for a
lead discovery program a similarity radius of 0.7 is
sufficient, given the enhanced efficiency compared to a
random selection and the 90% coverage of biological
targets.
3.5. Maximum Dissimilarity Methods versus

Random Selections for Local Diversity. Finally the
effectiveness of maximum dissimilarity methods as
experimental design technique to generate different sets
of diverse compounds was investigated. Those com-
pounds were subsequently analyzed using CoMFA as a
3D-QSAR technique.20-23 The purpose of this study is
to illustrate a strategy based on our previous results
for the development of a predictive 3D-QSAR model26,27
using CoMFA. The entire strategy is again based on
the assumption that smaller sets of representative
compounds, if properly chosen, represent all other
compounds in a structurally homogeneous classsa
similar assumption to that previously used to design
compound subsets for biological screening. This inves-

tigation reflects, how CoMFA operates on diverse or
similar training sets and thus provides guidelines on
how to design informative series for generating and
validating sound and predictive QSAR models.
A dataset of 138 ACE inhibitors covering a biological

activity of 7 orders of magnitude with a known super-
position rule was used to select different compound
subsets from 10 to 134 members. Again maximum
dissimilarity methods or random selections were utilized
to obtain representative subsets. For every subset the
mean and maximum Tanimoto coefficients are plotted
in Figure 6a versus the corresponding number of
compounds within each subset. Again it can be seen
that all designed compound subsets are more diverse
than any randomly selected subset.
For every compound subset the following strategy was

applied to evaluate the predictivity of the QSAR
model: A cross-validated PLS analysis was done using
steric and electrostatic molecular fields to obtain the
cross-validated r2 value and the optimal number of
components. Then a PLS analysis without cross-valida-
tion with the optimum number of components was used
to compute a conventional r2 value. Based on this model
for various training sets, the biological activities for all
other compounds were predicted and the predictive r2
value was computed following eq 9 for this model. This
value clearly indicates the agreement between the test
dataset and the 3D-QSAR model. Finally the obtained
three different r2 values for each dataset were plotted
against the number of compounds in the training
datasets (cf. Figures 6b,c).
From Figure 6b, it can be seen that cross-validated

r2 values are very low when the number of compounds
used to generate the QSAR model is lower than ca. 40
molecules. Although the non-cross-validated r2 value
is high for those small subsets, the predictive ability is
low as indicated by the small predictive r2 values. When
analyzing subsets with more than 40 structures, the
cross-validated r2 value reaches values between 0.5 and
0.6, while the non-cross-validated and predictive r2

Figure 5. Efficiency enhancement for the IC93 database (black) and the BAYER database (gray) for coverage rates of the biological
target classes, computed using eq 10.
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values are also acceptable. Now the derivation of the
3D-QSAR model and the prediction of the training

dataset are highly reliable. The predictive r2 value
drops significantly when there are more than 130
molecules in the training set, because the corresponding
test dataset is statistically not large enough for mean-
ingful analyses. Hence the last values could not be
included to derive a trend. Using maximally diverse
subsets containing more than 40 molecules led to stable
PLS-derived 3D-QSAR models. For every compound to
be predicted there is at least a close neighbor in the
training set.
To complement this study, another investigation was

done with randomly chosen subsets. For each subset,
the same type of analysis was applied, leading to the
graph displayed in Figure 6c. There is a much higher
fluctuation in the cross-validated and conventional r2
values. However the most dominant feature is the
almost complete loss of the predictive ability of indi-
vidual QSARmodels, revealed by very large fluctuations
in the predictive r2. This can be rationalized by the fact
that the training datasets are not designed using a
rational method. Hence, not only will every prediction
be an interpolation, but also a large degree of extrapola-
tion is present. When training subsets are randomly
chosen, there is a high risk that variances of several
spatial regions are not represented in the training
dataset. Hence, a test compound with a substituent in
this region cannot be properly predicted by interpola-
tion. For a randomly designed subset that chance for
every compound to be predicted to have a close neighbor
in the training dataset is low.
Taking only 40 compounds designed using maximum

dissimilarity methods led to a maximum Tanimoto
coefficient for this dataset of ca. 0.5, while a maximum
Tanimoto coefficient of 0.7 is observed with 80 com-
pounds. This latter subset led to better predictive r2
values and acceptable cross-validated r2 values. Here
no major difference can be seen when taking more
designed compounds into account, corresponding to a
similarity radius of 0.85. As there are no longer enough
compounds in the test dataset, the prediction becomes
statistically unstable and the predictive r2 value is no
longer relevant. It can be concluded that designed
subsets of compounds using maximum dissimilarity
methods lead to more stable QSAR models with higher
predictive power. This predictive power is especially
high when there are no compounds in the test dataset
having a Tanimoto coefficient less than 0.7.
This study clearly shows that 3D-QSAR techniques

such as CoMFA will work better, in terms of more stable
and reliable statistical results, when a design technique
was used to generate a well-balanced training set. It
is possible to obtain PLS models of similar quality with
a much lower number of compounds using design
techniques. Furthermore the predictive power of CoM-
FA is especially high, if there is a high degree of
structural similarity between compounds in the training
set and the test set. Thus a careful design of training
and test datasets should avoid some synthetic effort and
allow to prioritize candidate molecules in a more reliable
way.

4. Conclusion

The design of combinatorial libraries or the selection
of nonredundant compounds from databases is an

Figure 6. Comparative molecular field analysis of designed
and randomly chosen compound subsets for the dataset of 138
structurally diverse ACE inhibitors.9 (a) Comparison of the
mean and maximum Tanimoto coefficients (denoted as mean
or max) for random and maximum dissimilarity selections
(denoted as random or diss) plotted on the y-axis versus the
number of chosen compounds in a subset on the x-axis. (b)
Comparison of three different r2 values (cross-validated using
SAMPLS, conventional and predictive r2 plotted on the y-axis)
for each dataset obtained using maximum dissimilarity meth-
ods versus the number of compounds in the training datasets
(x-axis). (c) Comparison of three different r2 values (cross-
validated using SAMPLS, conventional and predictive r2
plotted on the y-axis) for each dataset obtained using random
selection versus the number of compounds in the training
datasets (x-axis).
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essential problem in the lead-finding process. Several
techniques and methods have been suggested to address
this need. However, one fundamental question stimu-
lated our research described within this publication:
Are designed compound subsets superior in the sense
of sampling more biological targets compared to ran-
domly chosen subsets? This question was answered
using statistical analyses of several random selections
in comparison with different rational design approaches.
Based on initial studies, maximum dissimilarity meth-
ods and hierarchical clustering techniques were chosen
to design compound subsets in a rational manner. As
the molecular descriptor, 2D fingerprints were utilized
because they were recently shown to be appropriate in
selecting representative subsets of bioactive compounds,
when comparing the sampling properties of other met-
rics carrying 2D or 3D molecular information. For our
analysis it was important to investigate whether a
particular method was able to select group molecules
according to their biological properties. Indeed this
analysis reveals that a randomly selected compound
subset generally represents fewer biological classes than
any descriptor-based rational selection.
All three databases used in this study were interest-

ing candidates to lower redundancy and design diverse
subsets because of a high degree of very similar struc-
tures found by analyzing pairwise Tanimoto coefficients
between neighboring pairs. Using hierarchical cluster-
ing a subset of 12% of the compounds from the BAYER
database was found to represent all biological target
classes by at least one hit per target, while the prob-
ability to cover those targets using a random selection
is indeed very low (only 12%).
Then the relationship between maximum diversity

and similarity searches was studied to find a pair of
similarity coefficients, which resulted in the ideal
proportion of 1 comparing the number of hits from both
applications. This optimal proportion of 1 was using a
somewhat smaller Tanimoto coefficient for the diversity
selection than for the similarity search. This finding
suggests that a particular compound obtained in a
maximum dissimilarity subset is present in different
neighborhoods defined using the similarity search thresh-
olds, which contrasts with hierarchical clustering meth-
ods, where a single compound is always assigned to only
a single cluster. Using a proportion of 1, the overlap of
different neighborhoods is nearly eliminated and most
of the structural diversity is covered.
Furthermore allowing some biological targets to be

missed when designing new compound subsets is ad-
vantageous in terms of efficiency and resource manage-
ment. It was possible to get information about the
efficiency enhancement, i.e., the relationship between
the number of compounds to be chosen randomly or
using design techniques in order to cover a specific
percentage of biological targets. Filling the gap between
90% and 100% coverage rates requires many more
compounds, and the efficiency enhancement effect is not
longer so dominant. The highest efficiency was found
for two unrelated databases at a value of 90% coverage
of the biological targets, which translates in both cases
to a Tanimoto coefficient of 0.7 for a similarity search.
In contrast, a similarity radius of 0.85 can be derived
for a maximum dissimilarity subset, which covers 100%

of the biological targets. Hence we conclude that for
designing a compound collection for secondary screening
or lead refinement, a similarity radius of 0.85 seems to
be sufficient, while for an initial screening library a
similarity radius of 0.7 should be used based on the
derived enhanced efficiency.
Hence this detailed retrospective analysis suggests

the possibility to represent the structural diversity of a
database using smaller subsets generated using rational
design techniques without missing interesting biological
activities. Thus a more detailed picture of molecular
diversity and design techniques begins to emerge and
will help to better understand the fundamental rela-
tionship between the degree of structural variation and
its influence on biological activity.
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